(a) \dim\mathbb P^n=n.
(b) If Y\subseteq\mathbb P^n is a quasi-projective variety, then \dim Y=\dim\bar Y.
[Hint: Use (Ex. 2.6) to reduce to (1.10).]
(b) If Y\subseteq\mathbb P^n is a quasi-projective variety, then \dim Y=\dim\bar Y.
[Hint: Use (Ex. 2.6) to reduce to (1.10).]
(a) Note I(\mathbb P^n)=(0), so S(\mathbb P^n)=S. But \dim S=n+1 and \dim\mathbb P^n=\dim S(\mathbb P^n)-1=n.
(b) Consider any nonempty component Y_i=Y\cap U_i: by 2.6 \dim Y_i=\dim Y. Further, U_i is open, so \bar Y_i=\bar Y\cap U_i. By Proposition 1.10 and the fact that the Y_i are Zariski homeomorphic to quasi-affine varieties, we find \dim Y_i=\dim\bar Y_i. But \dim\bar Y_i=\dim\bar Y again by 2.6, so \dim Y = \dim Y_i=\dim\bar Y_i=\dim\bar Y.
No comments:
Post a Comment